

Development of Simulation Software for NPT-MD

by Andrew Scott

ARL-CR-554 November 2004

prepared by

Department of Electrical Engineering
Alabama A&M University

P.O. Box 1146
Normal, AL 35762

under contract

DAAD17-01-P-1238

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-CR-554 November 2004

Development of Simulation Software for NPT-MD

Andrew Scott

prepared by

Department of Electrical Engineering
Alabama A&M University

P.O. Box 1146
Normal, AL 35762

under contract

DAAD17-01-P-1238

Approved for public release; distribution is unlimited.

 ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

November 2004
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

1 January 2001–31 January 2002
5a. CONTRACT NUMBER

DAAD17-01-P-1238
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Development of Simulation Software for NPT-MD

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

CHSSI CCM5
5e. TASK NUMBER

6. AUTHOR(S)

Andrew Scott*

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Department of Electrical Engineering
Alabama A&M University
P.O. Box 1146
Normal, AL 35762

8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRD-ARL-WM-BD
Aberdeen Proving Ground, MD 21005-5066

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

ARL-CR-554
12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

*Alabama A&M University, Normal, AL.

14. ABSTRACT

This report details the development of simulation software for the Common High Performance Computing Software Support
Initiative Project: Visual eXtensible Molecular Dynamics. The software was designed for use in the NPT Ensemble of the
Message Passing Interface-based program “Novice-MD.” NPT assumes a fixed number of particles, N, constant pressure, P,
and temperature, T. Thus, the corresponding change in volume due to system behavior causes the simulation cells to change
shape. From a computational perspective, however, the external boundaries of simulation cells (two- and three-dimensional)
must remain mutually perpendicular to maintain numerical stability. Algorithms were developed to convert strained, shape
changed, simulation cells into equivalent “rectangularized” cells at each time-step in the dynamic simulation, for both Runge-
Kutta and Leap-Frog-Verlet integrators. The conversions at each step are tracked throughout the simulation, thereby enabling
conversion to the original coordinate system at any intermediate step, and at the conclusion of the simulation. The software was
written in Fortran 90 (f90), and interwoven as necessary with the existing Novice-MD code. The capabilities were successfully
implemented and tested on the SGI Origin system at the U.S. Army Research Laboratory Major Shared Resource Center.
Additionally, the Novice-MD code was ported and tested on a CRAY SV-1 vector platform.

15. SUBJECT TERMS

NPT-MD, molecular dynamics

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON
Betsy Rice

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

UL

18. NUMBER
OF PAGES

 20 19b. TELEPHONE NUMBER (Include area code)

(410) 306-1904
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

 iii

Contents

1. Introduction 1
1.1 Statement of Work...1

1.2 Period of Performance...1

2. Algorithm Overview 2

3. Code Overview 5

4. Verification 9

5. Deliverables 9

6. Future Work 10

7. Conclusions 10

Distribution List 11

 iv

INTENTIONALLY LEFT BLANK.

 1

1. Introduction

This document serves as the final written report for agreement DAAD17-01-P-1238 between the
U.S. Army Research Laboratory (ARL) and the Alabama A&M University Research Institute. It
documents adherence to the following.

1.1 Statement of Work

Development of the Message Passing Interface -based Visual eXtensible Molecular Dynamics
(VXMD) compatible modules for the creation, maintenance, and migration of parallel atomic
bond lists and the force modules that use the bond lists.

The principal investigator is Dr. Andrew Scott.

The work under this agreement will consist of extending and improving, and parallelizing the
serial bond list software written by Dr. Betsy Rice. The extended software will have two
components, one for handling the atomic bond lists within the domain decomposition used by
VXMD, and the second will be the force and integration routines that use these lists. These lists
require the development of a mapping scheme that will transform “skewed” cells into rectangular
for two-dimensional (2-D) and three-dimensional (3-D) cases.

The specific deliverables for this task will be a robust set of modules that allow the
implementation of a MD simulator assuming the NPT ensemble.

All results and codes will be shared with ARL. The final document will describe algorithm and
code development, as well as specifics for interfacing with existing software under CCM-5. Any
follow-on computational effort will focus on extending the VXMD. Other issues will be
addressed as they arise.

1.2 Period of Performance

This report describes work that was conducted from 1 October 2001–31 January 2002.
Preliminary results were provided to ARL in the November 2001 timeframe.

Specific deliverables:

• Routines that transform non-rectangular prism simulation cells to rectangular prism cells,

• Within shape-changing NPT MD simulation, coordinate transforms such that optimal
rectangular prism simulation shape is maintained, incorporated into the MPI version of the
MD code, and

 2

• For post-simulation analysis, routines for inverse transformation of simulation cell from
rectangular prism shape.

This report provides an overview of the algorithms developed and the software produced, and
how they were incorporated in the existing MD software. The actual source code was submitted
to Dr. Betsy Rice at ARL on 30 January 2002. The new code that was generated, and the
existing Novice-MD routines that were modified, are detailed in section 3.*

2. Algorithm Overview

The following describes a methodology for converting the global Cartesian lattice system to a
“wrapped” local cell coordinate system.

Given:

• Lattice vectors [a,b,c] in global Cartesian format.

Determine:

• Coordinate transformation matrix, A, to map the atoms and lattice vectors into the local
simulation environment for the initial lattice and at each time step.

• “Wrap” the resultant local lattice vectors into rectangular (right angled) unit cells for
solution by the MD code for the initial lattice and at each time step.

• Track the global transformation, Aglobal, to provide conversion back to the initial global
coordinates at the end of the simulation, and/or at intervals throughout.

Products:

• The first lattice vector, a, must be oriented in the local x-direction.

• The next lattice vector, b (considering only the components orthogonal to the first lattice
vector) must be mapped into the local y-direction.

• The third lattice vector, c (considering only the components orthogonal to the previous
lattice vectors) must be mapped into the local z-direction.

Procedure:

1. Read in lattice vectors [a,b,c].

2. Find a set of global orthogonal vectors [la,lb,lc] from [a,b,c].

*For further information regarding dissemination of the software, contact Dr. Betsy Rice, USARL, ATTN: AMSRD-WM-

BD, Aberdeen Proving Ground, MD 21005-5066, <betsyr@arl.army.mil>.

 3

(a) Denote first cell vector l1.

(1) Global coordinates of l1 match the global coordinates of the first lattice vector, a.

(2) Determine the global unit vector of l1, l1unit.

(b) Determine the next cell vector (orthogonal components to l1) from the lattice vector, b.

(1) Find the magnitude of the components parallel to l1; denote as b_shadow, e.g., b_shadow
= dot_product(b,l1unit).

(2) Find the components of b that are parallel to l1; denote as b_par, e.g., b_par
= b_shadow*l1unit.

(3) Find the components of b that are perpendicular to l1; denote as b_orth, e.g., b_orth = b -
b_par=l2.

(4) Note that the global coordinates of l2 represent only the components of the original lattice
vector, b, that are orthogonal to l1.

(5) Determine the global unit vector of l2, l2unit.

(c) Determine l3, from the remaining lattice vector, c.

(1) Find the components of c that are parallel to l1, as above. Denote c_par1.

(2) Similarly, find the components of c that are parallel to l2 as above. Denote c_par2.

(3) Determine the components of c that are perpendicular to both l1 and l2. Denote l3 = c –
c_par1 – c_par2.

(d) [l1,l2,l3] are orthogonal cell vectors in global coordinates formed by projection of the
initial lattice vectors.

3. Find a set of local cell vectors [l1local, l2local, l3local] from the global vectors [l1, l2, l3].

(a) Find the magnitudes (lengths) of the vectors |l1|, |l2|, |l3|.

(b) Map the magnitude of the l1 vector to the local x-direction.

(c) Map the magnitude of the l2 vector to the local y-direction.

(d) Map the magnitude of the l3 vector to the local z-direction.

(e) For example, the mapping from the global [l1,l2,l3] to the local system
[l1local,l2local,l3local] takes the following form:

 4

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⇒

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

300
020
001

321
321
321

l
l

l

lll
lll
lll

zzz

yyy

xxx

.

4. Find the coordinate transformation matrix, A.

(a) Denote the set of global vectors [l1,l2,l3] as the matrix L and the set of local vectors
[l1local,l2local,l3local] as the matrix Llocal.

(b) The mapping function takes the form of the equation, AL = Llocal, where A is an unknown
coordinate transformation matrix providing the mapping from the global to the local
system.

5. Solve for A, with the following:

 1−= LLA local . (1)

6. Convert global coordinates to local.

(a) Determine the local lattice vectors, with A*[a,b,c] = [alocal,blocal,clocal].

(b) Determine the local atom positions with A*rglobal = rlocal.

(c) Etc….

7. Determine the form of the “wrapped” rectangular unit cell.

(a) The global matrix L and the local matrix Llocal meet the criteria for the “wrapped”
rectangular unit cell vectors since they are orthogonal and created from projections of the
initial lattice vectors.

(b) This can be verified by checking that the volume of the “wrapped” cell is equal to that of
the original lattice cell.

(c) Atom coordinates can be wrapped to fit into the rectangular unit cell by utilizing the
assumption of periodic conditions in the overall lattice structure.

8. Update the historical transformation matrix, which can be used to convert back to the
original or “global” coordinate system when required.

(a) If t=t(0), then Ahistory = A.

(b) Else Ahistory = A * Ahistory.

In the case of NPT/ShapeChange, there is a strain tensor acting on the cell vectors at each
iterative step in the simulation. The actual lattice vectors need to be updated with this
incremental strain in order to identify specific boundary conditions. The lattice vectors in local
coordinates are updated as follows:

 5

• Determine the incremental strain in the simulation cell, dStrainTensor, by multiplying the
strained local cell vectors, L_local_strained, by the inverse of the original local cell
vectors, L_localn,

 dStrainTensor = (L_local_strained)*(L_Localn)-1. (2)

• Determine the new (strained) actual lattice vectors in local coordinates by multiplying the
current lattice vectors by the newly acquired dStrainTensor:

 latticeVectorsn+1 = dStrainTensor*latticeVectorsn. (3)

In the case of RungeKuttaNPT, a shape change is required at each of the four steps in the
integration method. Therefore, the transformation is applied to each of the relevant variables in
each step and any corresponding variables obtained in previous steps. This is required since the
Runge-Kutta method adds terms from each of the four steps, so they must be represented in the
same coordinate system to provide meaningful results.

In the case of LeapFrogVerletNPT, a shape change is required only once in the integration
method. It applies to any active variables, as well as historical values that are saved for use in
subsequent iterations.

3. Code Overview

The following describes new code that was written and outlines the changes that were made in
the existing software to accommodate the new functionality. The description is listed by
individual source code file and routine name as appropriate. The Fortran source files are denoted
with the .f90 suffix. Individual routines and/or data objects that are being described are listed in
italics. Items in single quotes refer to variables and routines within the Novice-MD software.
Items in double quotes refer to system variables and routines. The double colon convention is
characteristic of software specification. As previously mentioned, contact Dr. Betsy Rice for
further information regarding dissemination of the software.

accumulateMod.f90

• IncrementalOutput:: rotate incremental stress tensor to global coordinates. Call
‘IncrementAccumulator’. Rotate ‘stress tensor’ back to local coordinates.

boundaryConditionsMod.f90

• BoundaryConditionsUpdate:: if ‘ShapeChange’, use the ‘current_lattice_ vectors’ from the
transformCell. Otherwise use the simulationCell lattice vectors.

brennerMod.f90

 6

• BrennerInitialize:: Fixed bug, initialize ‘dimension’ variable.

controlDescMod.f90

• ControlDescCreate:: changed “rand” and “srand” functions to “ranf” and “seed” functions
for use on the CRAY platform. SGI requires the original file.

latticeMod.f90

• SimulationCellRestart:: if ‘ShapeChange’ then read the transformCell from the restart file
with routine ‘SimulationTransformRead’.

• LatticeNewRead:: if the root process, rotate the atoms into the local system using
‘UtilityRotateCoordinates’, then wrap them into the local simulationCell using
‘UtilityWrapCoordinates’.

• LatticeWrite:: if’ShapeChange’, output the transformCell to the restart file using
‘SimulationTransfromWrite’.

• LatticeAtomsPrint:: if the root process, then rotate the atom coordinates into global space,
write the data out, then rotate the atom coordinates back into local space using
‘UtilityRotateCoordinates’.

• Fcc and cubic:: changed ‘rand’ to ‘ranf’ for use on the CRAY; reverse for SGI.

moverMod.f90

• LeapFrogVerletNPT:: is ‘ShapeChange’, incorporate transformCell to allow shape change
of the current cell and subsequent cell rectangularization for each iteration, using
‘SimulationCellUpdate’. Rotate coordinate variables; x, vx, dvx, vold into new local
coordinates using ‘UtilityRotateCoordinates’. Rotate the strain matrix, eta, into the new
system.

noviceMD.f90 (main program)

• Create the ‘transformCell’ from the initial ‘simulationCell’ input using
‘SimulationCellTransform’.

• Set ShapeChangeFlag = 1 if ‘ShapeChange’.

• Added ‘DEBUG’ statements to print transformCell.

rungeKuttaMod.f90

• RungeKuttaNPT:: if ‘ShapeChange’, incorporate ‘transformCell’ to allow shape change of
unit cell and subsequent cell rectangularization for each of the four steps in the R-K
integration using ‘SimulationCellUpdate’. Rotate coordinate variables; x, vx, dvx, k0, k1,

 7

l0, l1, q, and qv for each step using ‘UtilityRotateCoordinates’. Rotate the matrices; eta,
e0, e1, h0, h1 into new local coordinate system.

simulationCellMod.f90

• SimulationCellT:: added a pointer, ‘transformCell’ of type ‘transformCellT’ to the data
structure for ready access to the transformation data.

• SimulationCellCreate:: initialize ‘transformCell’ pointer to NULL.

• SimulationCellUPdate:: added this routine to update the transform and simulation cell
structures during NPT ‘ShapeChange’ procedure.

• SimulationCell Transform:: added this routine to transform the initial simulationCell
lattice vectors to the rectangularized cell for simulation.

• SimulationCellFormattedWrite:: if ‘ShapeChange’ then transform current lattice vectors to
global coordinates. Output global lattice vectors. Transform lattice vectors back into local
coordinate system.

• SimulationTransformWrite:: added this routine to write the transformCell structure to the
‘RESTART’ file, in the case of ‘ShapeChange’.

• SimulationTransformRead:: added this routine to read the transformCell structure from the
‘RESTART’ file.

• SimulationCellDestroy:: dispose of ‘transformCell’ structure.

• CalculateNType:: changed the function for random number generation to RANF for
CRAY port, and back to RAND for SGI.

transformCellMod.f90

• TransformCellT:: added the data structure containing the components needed to transform
the ‘simulationCell’ to rectangularized cells. Includes rotational history data and
‘strainTensor’ history information.

• TransformCellCreate:: new routine to allocate memory and initialize the ‘transformCell’
data structure.

• TransformCellUpdate:: new routine to update the ‘transformCell’ structure given a new
lattice vector configuration.

• TransformCellProcess:: Performs the actual calculations to find the rotated, wrapped cell
and the current transform matrix A.

• TransformCellPrint:: new routine to release the memory associated with the
TransformCell structure.

 8

utilityMod.f90

• UtilityRealPrint:: new routine to output a formatted array of real numbers. Typically
some sort of coordinate information.

• UtilityWrapCoordinates:: new routine to “wrap” an array of atom coordinates to fit inside
a given simulation cell.

• UtilityRotateCoordinates:: new routine to rotate an array of atom coordinates with a given
rotation transform matrix, A.

• UtilityInverse:: new routine to “wrap” an array of atom coordinates to fit inside a given
simulation cell.

• UtilityMag:: new function to calculate the magnitude of a given vector.

• UtilityUnit:: new routine to determine the unit vector associated with a given vector

• UtilityPar:: new routine to determine the parallel components of one given vector to
another.

• UtilityPerp:: new routine to determine the perpendicular components of one given vector
to another.

• UtilityCross_3d:: new routine to determine the vector cross product of two 3-D vectors.

• UtilityGauss:: Public domain f77 LINPACK LU decomposition routine, which was
modified with f90 syntax and customized for use with this project.

• UtilityGedi:: Public domain f77 LINPACK routine, which inverts the LU decomposed
matrix resultant of UtilityGauss and calculates its determinant (used for cell volume
calculation). It was modified with f90 syntax for this project.

• UtilityScal:: Public domain f77 BLAS routine that scales a given vector by a constant. It
was modified with f90 syntax for this project.

• UtilitySaxpy:: Public domain f77 BLAS routine that calculates a constant times a vector
plus a vector. It was modified with f90 syntax for this work.

• UtilitySwap:: Public domain f77 BLAS routine that interchanges two vectors. It was
modified with f90 syntax for this work.

• UtilityIsamax:: Public domain f77 BLAS routine that returns the index number of the
element having the maximum value in a given real array. It was modified with f90 for use
in this project.

initialVelocitiesMod.f90

 9

• Gauss:: changed random number generator to “RANF” for use on the CRAY and back to
“RAND” for the SGI.

mallopt.c

• MALLOPTDEBUG/MALLOPTNODEBUG:: added an extern “C” declaration for use on the
CRAY. Changed the ‘M_DEBUG’ keyword to ‘M_TRACE’ on the CRAY and back for
SGI. The keywords differ between the platforms.

putAttributeMod.f90, conserveMod.f90, ewaldMod.f90, potentialMod.f90, radial.f90,
radialMod.f90, rungeKuttaMod.f90, workMod.f90

• Changed the “double precision” variable type to “real (double)” for consistency and porting
to the CRAY.

makefile (/Cells directory)

• Modified the ‘makefile’ to include the new source code files, transformCellMod.f90 and
utilityMod.f90 for inclusion in the compilation process.

• Updated the dependency map to ensure appropriate ordering.

4. Verification

The methodology and concomitant code were tested and verified using one-dimensional, 2-D,
and 3-D cell vectors. The matrix inversion and vector routines are dimensionally independent,
with the exception of “UtilityCross-3d”, which requires 3-D vector input.

The updated program was compiled and tested on CRAY SV1 and SGI Origin2000 platforms.
The preliminary tests indicate that the desired ‘NPT/ShapeChange’ functionality is observed.

5. Deliverables

The source code for both CRAY and SGI versions were electronically submitted to Dr. Rice on
30 January 2002. This report satisfies the written documentation necessary for completion of the
project. As mentioned previously, Dr. Rice may be contacted for information regarding
dissemination of the software.

 10

6. Future Work

Subject to the availability of continued funds, future work will include updating the cell’s
neighbor lists and incorporating parallel force communications to the MD simulations, or any
other work deemed necessary by Dr. Rice.

7. Conclusions

This report has outlined the conformance and production of the project deliverables, specifically:

• Routines that transform non-rectangular prism simulation cells to rectangular prism cells
were created and tested.

• Within shape-changing NPT MD simulation, coordinate transformations to maintain the
optimal rectangular prism simulation shape were developed and introduced into the MPI
version of MD code.

• For post-simulation analysis, routines for inverse transformation of simulation cell from
rectangular prism shape were created.

In addition, the MD code was ported and tested on the Cray SV-1 vector platform.

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 11

 1 DEFENSE TECHNICAL
 (PDF INFORMATION CTR
 ONLY) DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FORT BELVOIR VA 22060-6218

 1 US ARMY RSRCH DEV &
 ENGRG CMD
 SYSTEMS OF SYSTEMS
 INTEGRATION
 AMSRD SS T
 6000 6TH ST STE 100
 FORT BELVOIR VA 22060-5608

 1 INST FOR ADVNCD TCHNLGY
 THE UNIV OF TEXAS
 AT AUSTIN
 3925 W BRAKER LN STE 400
 AUSTIN TX 78759-5316

 1 US MILITARY ACADEMY
 MATH SCI CTR EXCELLENCE
 MADN MATH
 THAYER HALL
 WEST POINT NY 10996-1786

 1 DIRECTOR
 US ARMY RESEARCH LAB
 IMNE AD IM DR
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CI OK TL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CS IS T
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

 1 DIR USARL
 AMSRD ARL CI OK TP (BLDG 4600)

NO. OF
COPIES ORGANIZATION

 12

 1 ALABAMA A&M
 DEPT ELEC ENGNRNG
 A SCOTT
 PO BOX 1146
 NORMAL AL 35762

ABERDEEN PROVING GROUND

 25 DIR USARL
 AMSRL WM BD
 W R ANDERSON
 R A BEYER
 A L BRANT
 S W BUNTE
 C F CHABALOWSKI
 T P COFFEE
 J COLBURN
 P J CONROY
 B E FORCH
 B E HOMAN
 S L HOWARD
 P J KASTE
 A J KOTLAR
 C LEVERITT
 K L MCNESBY
 M MCQUAID
 A W MIZIOLEK
 J B MORRIS
 J A NEWBERRY
 M J NUSCA
 R A PESCE-RODRIGUEZ
 G P REEVES
 B M RICE
 R C SAUSA
 A W WILLIAMS

